首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   1篇
  2020年   1篇
  2017年   2篇
  2015年   1篇
  2014年   4篇
  2013年   5篇
  2012年   7篇
  2011年   6篇
  2010年   5篇
  2008年   4篇
  2007年   1篇
  2005年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
2.
Pseudomonas putida DOT‐T1E‐18 is a strain deficient in the major antibiotic efflux pump (TtgABC) that exhibits an overall increased susceptibility to a wide range of drugs when compared with the wild‐type strain. We used this strain as a platform to search for microbes able to produce antibiotics that inhibit growth. A collection of 2400 isolates from soil, sediments and water was generated and a drop assay developed to identify, via growth inhibition halos, strains that prevent the growth of DOT‐T1E‐18 on solid Luria–Bertani plates. In this study, 35 different isolates that produced known and unknown antibiotics were identified. The most potent inhibitor of DOT‐T1E‐18 growth was an isolate named 250J that, through multi‐locus sequence analysis, was identified as a Pseudomonas sp. strain. Culture supernatants of 250J contain four different xantholysins that prevent growth of Gram‐positive bacteria, Gram‐negative and fungi. Two of the xantholysins were produced in higher concentrations and purified. Xantholysin A was effective against Bacillus, Lysinibacillus and Rhodococcus strains, and the effect against these microbes was enhanced when used in combination with other antibiotics such as ampicillin, gentamicin and kanamycin. Xantholysin C was also efficient against Gram‐positive bacteria and showed an interesting antimicrobial effect against Pseudomonas strains, and a synergistic inhibitory effect with ampicillin, chloramphenicol and gentamicin.  相似文献   
3.
New classes of antibacterial compounds are urgently needed to respond to the high frequency of occurrence of resistances to all major classes of known antibiotics. Microbial natural products have been for decades one of the most successful sources of drugs to treat infectious diseases but today, the emerging unmet clinical need poses completely new challenges to the discovery of novel candidates with the desired properties to be developed as antibiotics. While natural products discovery programs have been gradually abandoned by the big pharma, smaller biotechnology companies and research organizations are taking over the lead in the discovery of novel antibacterials. Recent years have seen new approaches and technologies being developed and integrated in a multidisciplinary effort to further exploit microbial resources and their biosynthetic potential as an untapped source of novel molecules. New strategies to isolate novel species thought to be uncultivable, and synthetic biology approaches ranging from genome mining of microbial strains for cryptic biosynthetic pathways to their heterologous expression have been emerging in combination with high throughput sequencing platforms, integrated bioinformatic analysis, and on-site analytical detection and dereplication tools for novel compounds. These different innovative approaches are defining a completely new framework that is setting the bases for the future discovery of novel chemical scaffolds that should foster a renewed interest in the identification of novel classes of natural product antibiotics from the microbial world.  相似文献   
4.
Systemic sclerosis (SSc) is a severe connective tissue disorder characterized by extensive fibrosis, vascular damage, and autoimmune events. During the last years, the number of genetic markers convincingly associated with SSc has exponentially increased. In this report, we aim to offer an updated review of the classical and novel genetic associations with SSc, analyzing the firmest and replicated signals within HLA and non-HLA genes, identified by both candidate gene and genome-wide association (GWA) studies. We will also provide an insight into the future perspectives and approaches that might shed more light into the complex genetic background underlying SSc. In spite of the remarkable advance in the field of SSc genetics during the last decade, the use of the new genetic technologies such as next generation sequencing (NGS), as well as the deep phenotyping of the study cohorts, to fully characterize the genetic component of this disease is imperative.  相似文献   
5.
Lead remains a considerable occupational and public health problem, which is known to cause a number of adverse effects in both man and animals. Here, the neuroprotective effect of flaxseed oil (1,000 mg/kg) on lead acetate (20 mg/kg) induced alternation in monoamines and brain oxidative stress was examined in rats. The levels of lead, dopamine (DA), norepinephrine (NE), serotonin (5-HT), lipid peroxidation, nitrite/nitrate (NO), and glutathione (GSH) were determined; also, the activity of acetylcholinesterase (AChE) and Na(+)-K(+)-ATPase were estimated on different brain regions of adult male albino rats. The level of lead was markedly elevated in different brain regions of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in AChE activity and GSH level. In addition, the levels of DA, NE, and 5-HT were decreased in the brain. These findings were associated with BAX over expression. Treatment of rats with flaxseed oil induced a marked improvement in most of the studied parameters as well as the immunohistochemistry features. These data indicated that dietary flaxseed oil provide protection against lead-induced oxidative stress and neurotoxic effects.  相似文献   
6.
Because of their unique properties, multipotent mesenchymal stem cells (MSCs) represent one of the most promising adult stem cells being used worldwide in a wide array of clinical applications. Overall, compelling evidence supports the long-term safety of ex vivo expanded human MSCs, which do not seem to transform spontaneously. However, experimental data reveal a link between MSCs and cancer, and MSCs have been reported to inhibit or promote tumor growth depending on yet undefined conditions. Interestingly, solid evidence based on transgenic mice and genetic intervention of MSCs has placed these cells as the most likely cell of origin for certain sarcomas. This research area is being increasingly explored to develop accurate MSC-based models of sarcomagenesis, which will be undoubtedly valuable in providing a better understanding about the etiology and pathogenesis of mesenchymal cancer, eventually leading to the development of more specific therapies directed against the sarcoma-initiating cell. Unfortunately, still little is known about the mechanisms underlying MSC transformation and further studies are required to develop bona fide sarcoma models based on human MSCs. Here, we comprehensively review the existing MSC-based models of sarcoma and discuss the most common mechanisms leading to tumoral transformation of MSCs and sarcomagenesis.  相似文献   
7.
This work documents 32 new Preussia isolates from the Iberian Peninsula, including endophytic and saprobic strains. The morphological study of the teleomorphs and anamorphs was combined with a molecular phylogenetic analysis based on sequences of the ribosomal rDNA gene cluster and chemotaxonomic studies based on liquid chromatography coupled to electrospray mass spectrometry. Sixteen natural compounds were identified. On the basis of combined analyses, 11 chemotypes are inferred.  相似文献   
8.
The induction of antigen-specific tolerance is essential to maintain immune homeostasis, control autoreactive T cells, prevent the onset of autoimmune diseases and achieve tolerance of transplants. Inflammation is a necessary process for eliminating pathogens, but can lead to serious deleterious effects in the host if left unchecked. Identifying the endogenous factors that control immune tolerance and inflammation is a key goal in the field of immunology. In the last decade, various neuropeptides that are produced by immune cells with potent anti-inflammatory actions were found to participate in the maintenance of tolerance in different immunological disorders.  相似文献   
9.
CD8(+) cytotoxic T lymphocyte (CTL) response is critical for controlling the infection of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Since only a few CD8 antigens have been described in Chagas disease patients, the identification of new class I-restricted epitopes is urgently needed for the development of immunotherapies against T. cruzi infection. In this study, bioinformatic methods were used to predict HLA-A?02:01-binders, and 30 peptides were selected, synthesized and tested for HLA-A?02:01 binding. Among them, sixteen peptides with medium-to-high affinity were assayed for their recognition by CTL from HSP70-immunized or T. cruzi-infected transgenic B6-A2/K(b) mice. Our results show that four immunodominant epitopes (HSP70(210-8), HSP70(255-63), HSP70(316-24) and HSP70(345-53)) are contained in the T. cruzi HSP70 antigen. Indeed two of them (HSP70(210-8) and HSP70(316-24)) were also recognized by CTL of HLA-A?02:01(+) Chagas disease patients, indicating that these peptides are processed and displayed as MHC class I epitopes during the natural history of T. cruzi infection. The HLA-A?02:01 restriction was evidenced using peptide-pulsed K562-A2 cells as antigen-presenting cells. Both cytotoxic and cytokine-secreting activities were detected in response to the former two peptides and, moreover, 10/12 patients (83%) recognized at least one of these two HSP70-derived CD8(+) epitopes.  相似文献   
10.
Annonaceous acetogenins are potent cytotoxic agents against tumor cell lines as well as potent inhibitors of mitochondrial Complex I (Degli Esposti and Ghelli Biochim Biophys Acta 1187:116–120, 1994; Degli Esposti et al. Biochem J 301(Pt 1):161–167, 1994; Tormo et al. Arch Biochem Biophys 369:119–126, 1999). Eighteen different ACGs belonging to seven structural sub-families were tested against six tumor and two non tumor cell lines in a MTT cytotoxicity assay to evaluate the correlation between mitochondrial Complex I inhibition and cytotoxic activity potency and selectivity. The results showed a substantial heterogeneity in potency and selectivity among the different compounds tested, although no clear overall structure-activity relationships could be established. To further characterize the biological activity of these compounds, four ACGs were selected based on their inhibition binding sites to Complex I, to evaluate their cytotoxic activity over a 15-minute to 48-hour period using a more sensitive time-course LDH cytotoxicity assay. Our results indicate that, although all of the ACGs were highly cytotoxic in HepG2 cell lines at 24 h, each sub-class behaves rather differently at shorter times. Perhaps other aspects related to how these compounds reach or bind to their target sites, or differences in their ability to cross the cell and/or the mitochondrial membranes, could help explain their different activities. This different behavior between ACGs may provide new clues for a better understanding of their potential antitumor properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号